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TOWARDS A RATIONAL BASIS FOR
MULTICHANNEL MUSIC RECORDING

James A. Moorer, Sonic Solutions
Jack H. Vad, San Francisco Symphony

The DVD-Audio standard will include multi-channel uncompressed PCM audio. Although
we have 30 (or more) years of experience with recording, mixing, and reproducing stereo,
as an industry we have relatively little experience with multi-channel music recordings for
the home. In this paper, we have chosen to optimize perceptual aspects of spatialization.
This leads to a mathematical basis for pan matrices, microphone placement, and for speaker
placement correction. Much of this basis can be considered to be an extension of the sound-
field work pioneered by Michael Gerzon. Recordings were done using simultaneous,
multiple experimental microphone techniques so that different methods could be easily
compared. Results of these experiments are described.
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Introduction:  

The number of ways we could imagine to do live recordings for presentation in a multi-
channel format is boundless. Although ultimately the final choices must be made on
aesthetic grounds, it seems useful to try to develop some objective means of evaluating
different techniques. The objective methods can then be used both to explain shortcomings
of certain techniques and to lead us in different directions that we may not have considered
otherwise.

We have chosen to optimize perceptual aspects of spatialization. This leads to a
mathematical basis for pan matrices, microphone placement, and for speaker placement
correction. There are two perceptual aspects that we consider: localization and ambiance.
By localization, we mean the accuracy with which the direction of a sound source is
perceived. By ambiance, we mean the feeling of “spaciousness” and depth. Although this
may appear obvious, we note in passing that the only possible contribution of multi-
channel audio over stereo is in the spatial aspects of the sound.

We must mention that music recordings are made for a wide variety of purposes. Different
people will optimize different aspects of the sound. We cannot hope to second-guess the
intent of the artists. The point of this examination is to attempt to explain on a rational basis
what we are hearing with various recording and panning techniques and to help the artist
achieve the desired effect, whatever that may be.

For localization, there are some objective measures that attempt to simulate human
perception of direction. These were called by Gerzon the pressure vector and the energy
vector. It is fairly well established that the pressure vector corresponds roughly to low-
frequency direction perception, and the energy vector to high-frequency direction
perception. In the mid-frequency range where our perception of direction is most acute,
both vectors are important. We note a refinement to the energy vector calculation that brings
it more into line with experimental determinations of loudness perception.

In the standard 5-channel surround setup that is popular with home theater surround-sound
systems, the speakers are generally not located at equal angles. We develop techniques for
dealing with varying placements of speakers, and techniques for re-matrixing the sound in
the home for speaker placements that differ from the placements in the studio where the
music was originally mixed. Subjective assessments of the efficacy of these techniques will
be discussed.

An experimental recording was done during the regular concert series of the San Francisco
Symphony Orchestra where several different microphone placements were simultaneously
recorded on a multi-track recorder. This allows simple comparison of different techniques
and different panning methods during the subsequent mixdown. Some subjective results
will be presented.

This paper is an expanded version of one presented at the 103rd AES Convention in Fall of
1997 [1]. Some of the development will be repeated here.

Perceptual Theory of Direction  

It is well established that human perception of direction is a relatively complex affair. We
will simplify it in this exploration to a simple measure that handles two of the most
important aspects of perception: inter-aural time delay and energy difference. These may be
summarized in a single formula. We use the definition of angle and speaker number shown
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in Figure 1. Note that this definition of angle differs from the standard mathematical
definition. The center of the coordinate system is at the center of the listener’s head.

Although it might be nice to have speakers out of the plane for full 3-dimensional
(“periphonic”) presentation [2], this is not likely to be the common setup in the home. For
this purely practical reason, we will restrict ourselves to planar speaker arrays.

Gerzon [3] presented a summary of some aspects of directional theory that included
calculation of the Makita (velocity) localization vector and the power vector. These
correspond roughly to first- and second-order aspects of localization. As Gerzon points
out, our knowledge of psychoacoustics suggests that human perception of location at low
frequencies is dominated by velocity cues and by power cues at high frequency [4]. We
will define a single measure that includes both of these as special cases.

Let gi be the gain of the signal fed to speaker i,  at an angle of θ i
.
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For low-frequency direction, Bernfeldt [5] showed that inter-aural time-delay is equivalent
to (1) with γ = 1 . We will call this the velocity, or pressure vector. Gerzon used an energy
vector calculation that is equivalent to (1) with γ = 2 . An exponent of 2 is very convenient
for mathematical manipulation, and it makes it possible to derive explicit closed-form
results, such as the “Rectangle Decoder Theorem” [3, 7]. Unfortunately, it does not
correspond exactly to the perception of direction at high frequencies. For instance, the ear’s
power law does not suggest an exponent of 2, but of some smaller value. Using Stevens’
result that a 10 dB change in signal power results in a perceptual doubling of loudness [6],
we might suggest that γ = 166.  would be a more suitable approximation. This still does not
take “head shadow” effects into account. A more complete objective measure would
simulate the effects of head shadowing as well. We will not attempt to do that here, but will
use the simple approximation used by Gerzon of γ = 2 . The results agree roughly with
subjective evaluations, so this seems to be a reasonable starting point.

Gerzon’s “Rectangle Decoder Theorem” shows that for speakers in a perfect square, these
vectors can be made to correspond when the channels are fed by three independent signals.
If we let W, X, and Y represent these 3 independent signals, then we present the speakers
with the following signals:

(2) S W Y Xi i i= + +cos sinθ θ

Again, θ i is the angle of speaker i using the coordinate system shown in Figure 1. Si  is
the signal that goes to speaker i. W is the signal that would be picked up by an
omnidirectional microphone at the origin of the coordinate system. Y is the signal that
would be picked up by a figure-of-eight pattern microphone pointed forward (towards
angle zero). X is the signal that would be picked up by a figure-of-eight microphone
pointed to the left (towards 90°)1.

                                                
1 Note that this microphone placement is for the purpose of mathematical examination of directional
aspects of sound. It is not suggested here as a practical microphone technique. Among other things, the
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It is straightforward to show that with the speaker signals shown in equation (2), using 4
speakers in a perfect square, the velocity and energy vectors correspond exactly. Gerzon
also generalized the theorem to any regular polygon [7]. Any number of speakers (greater
than or equal to 4) can be placed at equal angles and the vectors will still correspond.

There are a few corollaries that can be derived from Gerzon’s proof of the rectangle
decoder theorem. They are as follows:

• Uniqueness: Only speaker signals of the form shown in equation (2) will allow the
velocity and energy vectors to align.

• Specificity: If the speaker placement is not equi-angular (i.e., not in a regular polygon),
then there is no drive that will cause the vectors to align for all angles.2

For non-equi-angular placements, such as that shown in Figure 1, the velocity and energy
vectors can not, in general, be made to align everywhere. The difference between these
vectors can be used as a measure of the perceptual “spreading” of the image. The difference
between the “true” angle of presentation and either of these calculated angles can be used as
a measure of the accuracy of the reproduction of angle.

We will subsequently develop a technique for minimizing the difference between the
vectors. Appendix B shows the development of a closed-form solution for the speaker
gains that produce the minimum difference between the vectors for irregular speaker
placement. The vectors can be made to match for most angles, but not for all.

Placement of a Sound: Pan Matrices:  

With stereo sound, there is not much choice in how to distribute the sound to two speakers:
you send some amount to the left and some amount to the right. We can debate endlessly
what the correct proportions are, but we still only have 2 degrees of freedom (or one if
overall loudness is controlled separately). With multiple speakers, the question is a bit more
subtle. For instance, we might try the “obvious” method, which could be described as
follows: to place a sound at a particular angle, you find the two closest speakers, then apply
stereo panning to those two speakers to locate the sound in between them. We can apply
(1) to this technique and plot the results. Figures 3 and 5 show the gains to the 5 speakers
using stereo panning techniques to adjacent speakers. Figure 3 shows a -6 dB crossover
point, and Figure 5 shows a -3 dB crossover point. For these purposes, the speaker
placement is assumed to be symmetric about the front-to-back axis, so we have limited
these plots to 180°. Figures 4 and 6 show the pressure and energy angles determined by
this technique. These angles are the deviations from the intended angle, and thus can be
considered to contribute to the perceptual error. The pressure angle uniformly shows less
error than the energy angle. The difference between these curves represents the “spreading”
of the image.
                                                                                                                                                
frequency responses of directional microphones, such as figure-8 patterns, differ significantly at low-
frequencies from that of the omnidirectional microphone that these can not be used without equalization.
2 The proof of the decoder theorem for regular polygonal speaker placement relies on the fact that 
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If the speakers are not equi-angular, then cancellation of the sum of cosines of speaker positions does not
occur, and the vectors fail to coincide.
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In all the plots, we assume speaker angles of 60° and 135°. This is a somewhat wider
placement of the front speakers that can be achieved in most homes. We will discus later
the implications of moving the front speakers closer together.

The first thing that should be apparent is that neither angle is correct. The perceived location
will deviate from the desired location except when the direction is either directly into one of
the speakers, or directly in between two speakers. There is significant deviation at all other
angles. Moreover, the preferred technique, which has a -3 dB crossover point, shows
significant image spreading, since the energy angle error is in the opposite direction from
the pressure angle error. To interpret these plots, we must remember that a positive
deviation means that the image is “pulled” towards the next speaker, and a negative
deviation means that the image is “pulled” towards the previous speaker.

Note that since we are talking about a pan matrix, we could simply re-label the pan knob
with the angle that we perceive the sound at. This would straighten out the curves
somewhat, but the important fact is the difference between the two curves, since this
represents the diffusion of the image. Additionally, this technique would not work at all for
positioning spot microphone feeds into a multi-channel recording using the 2-dimensional
sound-field microphone which is described later.

Using a spatial harmonic expansion, we will derive a pan matrix that exhibits perfect
pressure angle. The energy angle will then be a measure of the image spreading involved.

We will start with the Fourier sine and cosine series on the circle. This is equivalent to the
spin harmonic functions described in [2], but reduced to the 2-dimensional case. In this
representation, the directivity function of a sound at a certain angle φ  can be expressed as
follows3:

(3) 1

2
+ −∑cos ( )n

n

θ φ

This represents a “spatial impulse” in the direction φ . The contribution to directivity from
speaker i is then:

(4) g ni i
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∑ cos ( )θ θ

where gi
 is the gain of the signal going to that speaker. This is simply the Fourier sine and

cosine series for a sound originating in the direction of speaker i;

We may now calculate the unknown channel gains, gi, by fitting the directivity function
(equation (3)) to the directivity function obtained by our speaker placement (equation (4)).
This fit may be performed as a least-squares operation to determine the unknown channel
gains4. After some manipulation, we arrive at the set of linear equations as follows:

                                                
3 This formula is derived in Appendix A of reference [1] and will not be derived again here.

4 Just to make it explicit, subtract (3) from (4), square it, and integrate with respect to θ  over 2π, then
differentiate with respect to the unknowns and set the result to zero.
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for k N= 1 2, ,..., . This gives N equations in the N unknown channel gains. In our case, of

course, N = 5. To be perfectly clear, both θ i  and θk  are the angles of the 5 speakers using
the coordinate system shown in Figure 1.

The astute reader will notice that the bounds on the summation on the cosine series have
been routinely omitted. This is deliberate. Technically, the expansion is not limited. Since it
is non-convergent, this is somewhat unhelpful. It does have to be bounded. In fact, given
that we only have 5 speakers, sampling theory says that if they were spaced equi-angularly
(at the vertices of a regular N-gon), then at best, we could recreate only the first two terms
(n = 1 and n = 2). Since our speakers are not equi-angular, it is spatial sampling with unequal
steps. The most conservative reading of the sampling theorem dictates that the highest
spatial harmonic is then related to the largest step. This limits us for practicality to the first
term only. In fact, if any of the angles between successive speakers is greater than 90°,
then even the first spatial harmonic can not be recreated exactly, and there is no hope for the
second harmonic - it will be aliased.

Before we examine the implications of this equation, it is worth discussing the higher
harmonics briefly. If we extend the series up to any given term then stop, we will get the
spatial analog of the Gibbs phenomenon. That is, there will be ripple, side-lobes, and other
undesirable side-effects. In general, the series would have to be limited by applying a
window function. This can assure a smooth directionality function, at the expense of
widening the image somewhat. This is a well-known tradeoff. Unfortunately, this implies
that you need a number of terms. A reasonable window function is not possible without 5
or 6 terms of the series, which would imply 11 to 13 speakers. Anything between 5
speakers and 11 speakers can not make effective use of higher spatial harmonics, because
of the side effects of abrupt termination of the spatial harmonic expansion. About the best
we can do is to use the 0th and 1st harmonics, with possibly some small amount of 2nd

harmonic to achieve a certain effect. We will discus this further a bit later. As an example of
the effect of un-windowed truncation, Figure 2 shows one solution of Equation (5) for the
front speaker using the 0th, 1st and 2nd harmonics. Note that it is bimodal: as the angle of the
sound goes from 0° (directly in front of the listener) to 180° (directly behind the listener),
the gain goes to a minimum, but then rises to a secondary maximum. If a window function
is applied (i.e., only a fraction of the 2nd harmonic is used), this behavior can be controlled.

There are a few properties of solutions to this equation that fall out immediately. The first is
that the sum of all the speaker gains is unity. This may or may not be the desired effect.
Many people prefer that the sums of the squares of the speaker gains be unity. Obviously,
the gains can be renormalized so that any particular property is satisfied. We might suggest
that it would be better to require equal loudness, which is a perceptual measure [8].
Unfortunately, the loudness is a relatively difficult quantity to compute, since it involves a
frequency analysis of the sounds that are being presented so that masking phenomena can
be taken into account. Given that we wish to calculate the gains of a pan matrix without
reference to the sound that will be presented, we might normalize the gains by the
following factor:
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(6)
1

gi
i

γγ ∑

We recognize this as the γ-norm of the speaker gains. As noted above, the valueγ =166.
gives an approximation to equal loudness at any desired angle in a frequency-independent
manner.

Another property of any solution to equation (5) is that the pressure angle is perfect.
Figures 7 and 8 show the gains and the resulting angles from a solution to equation (5).
The horizontal line in Figure 8 shows that there is no error in the pressure angle.

Equation (5) is of rank 3, since there are only 3 independent variables - one 0th-harmonic
term and two 1st-harmonic terms. To get a unique solution, we need to add other
constraints. Probably the most straightforward extension is to require that the second
harmonic terms be specified. This gives us 5 independent equations in 5 unknowns.
Figures 7 and 8 were produced from requiring the second harmonic terms be zero. In fact,
the second harmonic term corresponding to the cosine term should, in general, be set to
zero if we do not have 11 or more speakers. The reason is that a non-zero second-harmonic
cosine term produces asymmetry in the speaker feeds. That is, the gains for a particular
angle will not be the mirror-images of the gains for the negative of the angle. This is weird
enough to warrant elimination from further consideration. The sine term, however, can be
useful and will be carried along further.

This system of equations can be solved in closed-form. Appendix A gives the formulas.
They are complex enough that it is probably easier to solve the system of equations rather
than use the closed-form solution, since the system of equations is quite well-conditioned.
The solution does point out some degenerate conditions that probably should be obvious -
such as when two speakers are placed at exactly the same angle. Note also that when the
speakers are located at equal angles, most of the terms drop out.

With a constant 2nd-harmonic, the curves shown in Figure 7 are sinusoids.

There is one striking difference between the solution for channel gains given by equation
(5) and what you might imagine for surround-sound pan pots, and that there are
contributions from all the speakers, and sometimes speakers are driven out-of-phase. This
is somewhat non-intuitive but it is required to preserve the spatial harmonics.

Notice that the left side of equation (5) depends only on the speaker placement. This matrix
can be computed and inverted once for a given speaker layout. For any desired angle, the
channel gains may then be computed by a simple matrix multiplication. We will be
guaranteed that the zero-th and first spatial harmonics will agree with the zero-th and first
spatial harmonic of a sound source at the given angle.

The second harmonic term can be set to any constant value without changing these
properties. Too much second harmonic produces undesirable effects, such as certain
channel gains being entirely negative.

Since the entire system is linear, and we generally assume that air is linear as well, we may
then add voice after voice, each at its own angle, using equation (5) to determine the
channel gains.
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Note that the one “free” variable is the constant second-harmonic term. Since this may be
set to any value, we may use it to optimize any aspect we choose. Specifically, it may be
used to minimize the difference between the pressure and energy vectors. If we choose
γ = 2  in equation (1), then there is a closed-form solution shown in Appendix B. For
γ =166. , or any other value, the solution can not be expressed in closed-form, but can
easily be found by use of a line search [9]. Unfortunately, the solution is not unique, and
even the closed-form solution is not particularly well-behaved. For most of the desired
directions, the solution brings the energy vector and the pressure vector into exact
coincidence. This fact is interesting, but not terribly useful because of the poor behavior of
the solution. The optimum value of second harmonic sometimes requires large gains with
large negative gains in the opposing speakers. This can produce phasing for listeners that
are not at the exact center of the speakers. For some angles, the optimum second harmonic
can tighten the spatial image a bit, but for other angles, it produces unacceptable solutions.

Correction for Speaker Placement:

There is an interesting additional use for equation (5), and that is for adapting a recording to
a different set of speaker positions. If a recording is mastered using a given setup with
speaker angles θ i

, we may compute a matrix that converts the original speaker signals into
another set of signals such that the zero-th and first spatial harmonics correspond.
To see this, define the matrix representing the right-hand side of equation (5) as follows:

(7) M k i n i k
n

( , ) cos ( )= + −∑1 2 θ θ

For 0th and 1st order harmonics, we need to augment this equation with two different rows:

(8) M i i( , ) sin( )4 2= θ

(9) M i i( , ) cos( )5 2= θ

Similarly, we define the speaker gain vector as follows:

(10)       G g g g g g T= [ , , , , ]1 2 3 4 5
 
If we use the overbar to represent the matrix and new gains using the new speaker
placement, then we can solve for the new speaker gains as follows (in matrix notation):

(11)     G MM G= −1

Note that aesthetically, this may or may not be what is desired. The artist may want a
particular sound to come out of, say, the left front speaker regardless of where the speaker
is located in the room. In the case where a particular angle is desired, regardless of speaker
placement, the above procedure will accomplish that goal. This is also appropriate when
using the 2-dimensional sound field microphone, as described in the next section.

We might point out here that equation (11) can also be used to rotate the sound field. Since
we can use any set of speaker position angles to form the matrix M , we could, for
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instance, place the “center” speaker on the left, or even behind us. This is of dubious utility
in the home.

Application to Music Recording:  

We may use the same theoretical basis to derive a recording method that can be presented in
any number of channels that preserves the angular position of sounds at the time of
recording. Figure 9 shows a 2-dimensional sound-field microphone that consists of 3
identical directional capsules. A particularly interesting arrangement is to use 3
hypercardiod capsules and separate the forward-facing capsules, as in the ORTF
arrangement. This simultaneously gives us a stereo recording, using the front-facing
capsules, and a multi-channel recording when the effects of the rear-facing capsule is
added.

The directional feeds from the microphones may be described as follows:

(12) m C C1 1( ) ( )cos( )θ θ= + − − Ω
(13) m C C2 1( ) ( )cos( )θ θ= − −
(14) m C C3 1( ) ( )cos( )θ θ= + − + Ω

Where C represents the directionality of the capsule. For a hypercardoid capsule, C =
1
4

. Of

course, θ  represents the angle of the sound source using the coordinate system shown in
Figure 1, and Ω  represents the angle of the axis of the forward-facing capsules, as shown
in Figure 9. For the ORTF arrangement, this would be 54.7356°.

From these three feeds, we can derive the 0th and 1st harmonic components as follows:

(15)
a m m m

C
0

1 3 2

2

1
2

1
=

+ +

+

( ) cos( )

( cos( ))

Ω

Ω

(16) a
m m m

C1

1 3 2

1

2
1 1

=
+ −

− +

( )

( )( cos( ))Ω

(17) b
m m

C1
1 3

2 1
=

−
−( ) sin( )Ω

where a 0  represents the coefficient of the 0th-order spatial harmonic, and a1  and b1
represent the coefficients of the cosine and sine terms of the 1st-order spatial harmonic.

We can then derive the equations to matrix each microphone feed into the signals to deliver

to the speakers. Let si be the signal fed to speaker i. Let the column vector S represent the
speaker feeds (a 5-by-1 matrix). Let R be a 5-by-1 matrix representing the right-hand side
of equation (5). We can then write R explicitly as follows:
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(18) R

a a b

a a b

a a b=

+ +
+ +
+ +























0 1 1 1 1

0 1 2 1 2

0 1 3 1 3

2 2

2 2

2 2

0

0

cos( ) sin( )

cos( ) sin( )

cos( ) sin( )

θ θ
θ θ
θ θ

The coefficients a 0 , a1 , and b1  are combinations of the three microphone feeds as noted in
equations (15), (16), and (17). We can then solve explicitly for the speaker feeds as
follows:

(19) S M R= −1

where M is the matrix defined by equations (7), (8) and (9). This can be expanded further
to make the contribution of the microphones explicit. We will factor R as follows:

(20) R R R

m

m

m

=
















1 2

1

2

3

(21) R1

1 1

2 2

3 3

1

1

1

0 0 0

0 0 0
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


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
















cos( ) sin( )

cos( ) sin( )

cos( ) sin( )

θ θ
θ θ
θ θ

(22)
R

C C C

C C C

C C

2

1

2 1 1

1

2 1
1

2 1 1

1

1 1

1

2 1 1
1

2 1
0

1

2 1

=

+ + +

− +
−

− + − +

−
−

−
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




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
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( cos( ))

cos( )

( cos( )) ( cos( ))

( )( cos( )) ( )( cos( )) ( )( cos( ))

( ) sin( ) ( )sin( )

Ω
Ω

Ω Ω

Ω Ω Ω

Ω Ω
Thus the speaker feeds can be expressed as follows:

(23) S M R R

m

m

m

=
















−1
1 2

1

2

3

Figure 10 shows the gain of the rear-facing microphone into the center speaker, and the
gains of the forward-facing microphones into the center speaker versus the angle of
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speakers 2 and 5 (front left and front right). Note the interesting result that when the angle
of the speakers reaches 45°, the gains to the center speaker go to zero. At lower angles, the
center gain goes negative. This tells us several things:

• For presentation of music, the front speakers should be spaced further apart than is
generally done for film sound presentation.

• At “reasonable” speaker angles, the feed to the center speaker is small, which should
increase the decorrelation of sound from the left versus sound from the right.

• If the front speakers are too close together, the center speaker feed becomes large and
negative. This is to be avoided due to phasing problems when the listener is not in the
exact center of the speakers.

We may then analyze this method of distributing the microphone feeds to the 5 channels by
applying equation (1) to determine the pressure and energy angles. They will, of course, be
exactly those shown in Figure 8. That is, the pressure angle will correspond exactly to the
angle of the original sound. Furthermore, the energy angle will only deviate by no more
then 5° in front and no more than 6° in the rear.

Note also that equation (11) may be used to correct the signals to the 5 speakers to a
different speaker layout. That is, we can master the recording using the geometry of the
studio monitor system, then by a simple matrix multiplication, we can produce 5 speaker
feeds for the home system such that the sounds will appear at exactly the same angles as
they did in the studio. As noted before, this may or may not be what is desired.
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Analysis of the Multiple Omni Technique 

Note that there is another microphone technique that has been suggested for multi-channel
recording. This is to hang omnidirectional microphones such that the placement of the
microphones corresponds to the speaker locations that are used for auditioning. In this
arrangement, there is one microphone for each speaker. There is no matrixing. Each
microphone feed is sent to exactly one speaker. For an orchestral recording, this generally
is done as 3 microphones placed over the orchestra and two more placed over the audience.
If we analyze this technique, the resulting angles are shown in Figure 11. The levels to
each speaker are shown in Figure 12. From this, we may immediately make the following
predictions:

• The angles are only accurate for a sound straight ahead or in back
• The image will be “drawn” towards the speaker location. There will be little

localization of sounds between the speakers.
• The great difference between the pressure and energy vectors show that the

imaging will be diffuse.

The argument that is usually made for this arrangement is two-fold: first, since
omnidirectional microphones have flat frequency responses, there is no coloration of the
sound due to the directionality of the microphone. Second, since there is no matrixing, the
sound coming from the left is very different from the sound coming from the right, so the
left-right decorrelation should be large. There is, of course, feed-through of the sounds on
the right to the microphones on the left, and vice-versa. These crossover sounds will be

delayed and attenuated by an amount that can be calculated from the 
1

2d  law, where d is

the distance from the sound source. For a sound directly in front of the listener, the center
speaker will receive the greatest signal, but it will also appear in the left and right speakers,
though at a somewhat lower amplitude.

An Experimental Recording  

To test the theories that have been presented, we did a recording during the regular concert
season of the San Francisco Symphony in Louise M. Davies Symphony Hall. A total of 20
microphones were used to simultaneously test several different philosophies of microphone
placement. These were as follows:

• One sound-field microphone as shown in Figure (9) located above the 3rd row of the
audience using hypercardoid capsules.

• One ORTF pair to the left and right of the sound-field microphone.
• Two omnidirectional microphones 15’ apart above the 8th row of the audience
• Four omnidirectional microphones suspended over the front of the stage about 8’ apart.
• Nine “spot” microphones placed over various specific instrument groups (3 woodwind,

2 brass, violins II, viola, harp, and tympani).

The locations of the microphones was measured, so all the angles and distances were
known. A schematic diagram of the microphone placement is shown in Figure 13.

The combinations of the omnidirectional microphones allowed us to test the idea of sending
one microphone to one speaker. Since we were unable to place one single microphone over
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the conductor’s head because of a permanently fixed speaker cluster, we used two
microphones on each side of the speaker cluster for the center feed.

We recorded two different sound-field examples: one entirely coincident, sometimes called
a “point” microphone, and one with the front-facing capsules separated by 17 centimeters.
A single rear-facing hypercardoid was used for the rear feed.

A number of “spot” microphones were also used so we could test different ways of mixing
the spot feeds into the surround matrix.

One of the pieces, Bartok’s “Concerto for Orchestra”, proved an excellent subject for these
tests, since it features various combinations of tone colors, including solos, small
ensembles, and full orchestra, with the ensembles using a variety of different combinations
of instruments.

Experimental Results 

Unfortunately, any reporting of the results of the experiment are necessarily subjective.
Regardless of what our opinions are as to the relative quality of the different techniques,
there will surely be differing opinions throughout the industry. As mentioned earlier,
different artists will use different microphone placement and surround matrices to achieve
differing aesthetic results. With this in mind, let us present our opinions as to the results of
the test:

The omnidirectional pickup, where each microphone goes to exactly one speaker (except,
as mentioned, the sum of the two center microphones goes to the center speaker) produced
roughly the results predicted by the equations and shown in Figure 11. There was very
little imaging between the speakers. One could clearly hear the speaker locations. There
was little feeling of “space” in the concert hall, despite the fact that the reverberation in the
hall was quite evident in the recording.

This result is somewhat curious. Two omnidirectional microphones, possibly
supplemented with spot microphones, is a commonly used technique for stereo recordings.
Indeed, if we limit the presentation to two speakers, we get somewhat more imaging
between the speakers. Instrumental groups still get “pulled” towards the nearest speaker,
but there is some feeling of space. Going from 2 speakers to 5 speakers did not make
things better. In our opinion, it made things worse.

The coincident sound-field microphone and the ORTF sound-field microphones were quite
similar with the  ORTF front-facing capsules giving slightly better separation for some
instruments. We tried switching between the stereo recording, where the two front-facing
capsules were directed to left and right speakers, versus the 5-channel matrix of equation
(19). The 5-channel presentation was superior in all respects, but the difference between
the stereo presentation and the 5-channel presentation was not overwhelming. Adding the
rear-facing microphone does definitely add a feeling of space and of being “immersed” in
the sound. The imaging is improved, but (in our opinion) it still falls short of the
experience of actually being in the concert hall.

One problem that became immediately evident was that our sound-field microphone was
placed too far back. The audience sounds were clearly evident in the front speakers. The
array should probably be over the conductor’s head.

The use of the spot microphones is somewhat problematic. They do invariably pick up
some sound other than the intended local group of instruments. We panned the spot
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microphones to the original angle of the microphone using equation (5) to determine the
speaker gains. This preserved the imaging of the particular spot quite well, but it had a
tendency to diffuse the imaging of instruments to the left and right of the spot microphone.
This, presumably, is the tradeoff we must make when using spot microphones.

Summary:  

We have presented a method of analyzing multi-channel pan matrices and microphone
placement techniques for imaging quality in a manner that is largely consistent with human
perception and corresponds to subjective evaluations. This technique was used to
demonstrate that a straightforward extension to stereo panning formulas to multi-channel
usage does not produce good imaging except when the sound is placed in one speaker
only, or is placed halfway between two adjacent speakers. We also demonstrated that the
method of making multi-channel recordings that consists of using a number of
omnidirectional microphones then assigning each microphone to one and only one speaker
with no matrixing can not produce good imaging.

The method of spatial harmonics was used to derive multi-channel pan matrices that
produce reasonable imaging. This method was also used to suggest a microphone
technique. The 2-dimensional sound-field microphone shown in Figure (9) has one
significant advantage, in that the front-facing microphones can be used directly for stereo
recording as well as multi-channel recording. The equations for matrixing the microphones
into the speakers were given. Spot microphones may also be used to enhance certain
performers or instrumental groups, at the expense of diffusing the imaging of surrounding
instruments somewhat. Panning the spot microphone feed to the angle of the microphone
by using the same matrix that was used for the sound-field microphone assures that the
image from the spot microphone is in exactly the same position as in the sound-field
microphone.

Conclusion:  

Recording for multi-channel presentation of music requires changes to each stage of the
process, from microphone placement to pan matrices. Since we will be making dual
releases for some time to come (current stereo CD format and multi-channel DVD-Audio
format), it seems important to make sure that our recordings are compatible with both
release formats. We have given methods that have been verified experimentally (albeit
subjectively) that can accomplish this.

Future Directions:  

This study suggests as many issues as it answers. It would be interesting to move the spot
microphones closer to the instruments so that there is less “leakage” from nearby
instruments. This would sharpen the imaging, since the leakage diffuses the imaging of the
surrounding instruments. There are, of course, a number of problems with “close”
microphone placement, including, among other things, the pick up of extraneous sounds,
and the sometimes unnatural sound arising from the directional characteristics of the sound
field of the instrument itself.

Listening to the rear-facing microphone by itself is quite interesting. It suggests that it
might be possible to “synthesize” the rear channel. This would be advantageous, since it
would eliminate one prominent source of crowd noise. There are some interesting technical
challenges, since it would involve trying to estimate an impulse response that is more than
100,000 points long. Additionally, the front-facing microphones do pick up some amount
of the rear signal, so any synthesized rear signal, especially if it used a different impulse
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response (i.e., it came from a different concert hall), would not correlate properly with the
front-facing microphones.
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Appendix A: Closed-form Solution to Pan Gains:

The closed-form solution can be expressed as follows:

(A1) g g r g r g r gα αα α αα α αα α ασσ= + + ++ + − −1 1 1 1

Where gα  is the gain to speaker α and σ is the (constant) 2nd harmonic contribution (which

may be set to zero). rα  represents the right-hand side of the matrix equation. In the case of

the pan matrix, rα  is set as follows:

(A2) rα αθ= +1 2cos( )

In the case of  microphone feed, rα  is set as follows:

(A3) r a a bα α αθ θ= + +0 1 12 2cos( ) sin( )

where a 0 , a1 , and b1  are set as shown in equations (15), (16), and (17).

We may now define gαα−1 , gαα , gαα+1 , and gασ  as follows, using µ, ρ, and τ as
auxiliary variables.

(A4) µ θ θ θ θ θ θ θ θ θ θα α α α α α α α α α= − − − − + − − −( )− + + + − −2
1

2

1

22 2 1 1 1 1
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(A7)

gαα α α

α α α α α α

α α α α α α α α
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Appendix B: Solution for Optimal 2  nd   Harmonic    

We require the best possible match between the energy angle and the pressure angle. One
way of doing this is to minimize the following functional:

(B1)
g

g

g

g
i i

i i

i i

i i

2

2

2
sin( )

cos( )

sin( )

cos( )

θ
θ

θ
θ

∑
∑

∑
∑

−










At first this may seem intractable. If we note that any solution to equation (5) has the
property that the pressure angle is exactly ϕ, then we may restate the functional as follows:

(B2)
g

g
i i

i i

2

2

2
sin( )

cos( )

sin( )

cos( )

θ
θ

ϕ
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




With some rearrangement, we can produce another functional that is largely equivalent:

(B3) ( )gi i
2

2
sin( )θ ϕ−∑

Note that none of the three functionals is exactly equivalent to minimizing the difference
between the energy angle and the pressure angle. Since in most cases, the match is exact,
all three functionals will go to zero at an exact match, so the desired effect will be achieved.

Next, we express the gains, gi , as a combination of the solution with no 2nd harmonic and
the solution with the 2nd harmonic equal to one.

(B4) gi i i= +α σ β

where αi  is the speaker gain with zero second harmonic, βi  is the speaker gain with unit

second harmonic, and σ is the amount of second harmonic (which is unknown at this
point). We substitute (A4) into (A3), collect terms, and we have the following:

(B5) ( )( sin( )) ( sin( )) ( sin( ))α θ ϕ σ α β θ ϕ σ β θ ϕi i i i i i i
2 2 2 2

2− + − + −∑ ∑ ∑
The term being squared is a 2nd-order polynomial in the unknown σ. Let us denote that

polynomial by p(σ). We can then express the functional and the condition as follows:

(B6) p2 ( ) minσ =

If we apply the usual least-squares technique, we differentiate the above equation to obtain
something we can solve for σ:

(B7) p p( ) ( )σ σ′ = 0
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Any time you have the product of two polynomials equal to zero, one or the other has to be
zero (or maybe both). This reduces then to two separate equations:

(B7a) p( )σ = 0
(B7b) ′ =p ( )σ 0

This gives us three solutions. If (B7a) yields complex solutions, we ignore them and
choose the solution from (B7b). We will then have either 1 or 3 real solutions. We may
choose any one of them. In the case that there are 3 real solutions, we may make it unique
by requiring, for instance, that the Euclidean norm of the resulting gain vector (equation
(B4)) be a minimum.
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Figure 2: Gain to front speaker using 0th, 1st and 2nd order harmonics.
Note the undesirable behavior. The gain is bimodal. As the direction
of the sound approaches 180° (behind the listener), the gain rises to
a secondary maximum. Generally we want the speaker gains to be
smooth and unimodal as the sound position moves around the
listener.
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Figure 1: Numbering scheme for speakers and definition of
angular position. We assume that the speaker layout is
symmetric about the front-back axis.
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Figure 3: “Standard” pan formula with -6dB crossover points,
extended to 5-channel usage.
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Figure 4: For “standard” gain with -6dB crossover points, deviation
of pressure and power angle from true are plotted.
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Figure 5: “Standard” pan formula with -3dB crossover points,
extended to 5-channel usage.
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Figure 6: For “standard” gain with -3dB crossover points, deviation
of pressure and power angle from true are plotted.
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Figure 7: 5-channel gains versus virtual source angle. Gains are
constrained to have zero second spatial harmonics
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Figure 8: For gains constrained to have zero second spatial
harmonics, deviation of pressure and power angle from true are
plotted. Of course, the pressure angle is exact, so there is no
deviation.
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Figure 9: A 2-dimensional sound field microphone consisting of 3
identical directional capsules. They may be coincident, or the
forward-facing capsules may be separated as is used in the ORTF
arrangement (in which case, the capsules should be hypercardiods).
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Figure 10: Coefficient of rear-facing microphone (closest to zero)
and either forward-facing microphone to the center speaker for
varying angles of the front speakers.
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Figure 11: Pressure and power angle (in degrees) deviation from true
direction of sound source for pickup consisting of five omni-
directional microphones.
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Figure 12: Signal strengths to 5 omni-directional microphones as a
sound is moved around them.
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Figure 13: Simplified schematic diagram of the orchestra placement
showing the locations of the microphones. The “spot” microphones
were a mixture of cardoid and hypercardoid directional patterns. The
sound-field array consisted of one X-Y (coincident) pair of
hypercardoid microphones at an angle of 109.47° degrees, one ORTF
pair, and one rear-facing hypercardoid.


